CHAPTER 8

EXPECTANCY VALUE THEORY
IN CROSS-CULTURAL PERSPECTIVE

Allan Wigfield, Stephen Tonks,
and Jacquelynne S. Eccles

INTRODUCTION

Jason is a high school student who is in the process of deciding which elective classes to take during the fall semester in his senior year of high school. As he looks at the list of courses in different subject areas he thinks about what kinds of subjects he has done well in and how he expects to do in these subjects in the future. He always has done well in math, and so is confident that he could manage even the higher-level math courses he has not yet taken. He also thinks about which subject areas interest him, or may be useful to him in the future. Because he had a wonderful history teacher in his sophomore year, he has developed a strong interest in history and wants to learn more about it. He tentatively is thinking about majoring in engineering in college, and so he knows additional mathematics classes would be useful to him for this field, both to help him gain acceptance to college and also to be ready for the college engineering curriculum. Based
on his reflections about these issues, Jason decides on two electives: He chooses a history course on the topic of the 18th century in American and European history, and also an introduction to calculus course. Ultimately, his decisions were influenced by how well he expected to do in the classes available to him, his sense of the usefulness of the classes, and (particularly for his choice of the history course) his interest in the classes.

Chapter Overview

Jason’s decision-making process shows how individuals’ expectancies and values influence their choices of activities, in this case elective coursework during high school. This example captures some of the important constructs and principles of expectancy value theory, the theoretical perspective we discuss in this chapter. At the broadest level, expectancy value theory attempts to account for individuals’ choices of activities to do, and performance on them. We present the theory as researchers and theorists in the United States, Europe, and Australia have developed it, and then discuss various cultural influences on the constructs and principles of the theory.

We focus in this chapter primarily on the contemporary expectancy value model developed by Eccles, Wigfield, and their colleagues (Eccles, 1984a, 1984b; 1993; Eccles et al., 1983; Wigfield & Eccles, 2000, 2002). We focus specifically on three of the model’s constructs that have received the most research attention: beliefs about ability, expectancies for success, and achievement task values. We review research done in Western cultures on the development of individuals’ ability, beliefs, expectancies, and values, and also how they influence choice and performance in different areas, with a focus on academic choice and performance. We then turn to a discussion of possible cultural influences on expectancies and values, and different research approaches used in cross-cultural research on these constructs.

It is important to note that in Eccles and colleagues’ (1983) model certain cultural influences have always been considered. In particular, these theorists have written about how gender, cultural stereotypes about different subject areas and occupations, and the broader cultural milieu in which individuals grow up influence their expectancies and values (e.g., Eccles, 1984a, 1984b, 1993; Eccles et al., 1983). We consider cultural influences beyond this set, with a special focus on how the meaning of important constructs in the model might vary across culture. We review the relatively scant extant research on how expectancies and values develop in different cultures, then discuss how the meaning of these constructs may vary across culture, and consider the implications of this work for expectancy value theory.
EXPECTANCY VALUE MODELS

Expectancy value models have a relatively long history in the achievement motivation field (for historical overviews, see Weiner, 1992; Wigfield & Eccles, 1992). The expectancy and value constructs themselves initially were defined by theorists such as Lewin (1938) and Tolman (1932). Murray's (1938) notion of various human needs, and specifically the need for achievement, influenced expectancy value theorists. John Atkinson (1957, 1964) developed the first formal expectancy value model in an attempt to explain different kinds of achievement-related behaviors, such as striving for success, choice among achievement tasks, and persistence. Atkinson (1957) postulated that achievement behaviors are determined by achievement motives, expectancies for success, and incentive values. Atkinson defined expectancies for success as the individual's expected probability for success on a specific task, a value that goes from zero to one. He defined incentive value as the relative attractiveness of succeeding on a given achievement task, and also stated that incentive value is inversely related to the probability for success. He and his colleagues did an extensive body of research on individuals' achievement strivings under different probabilities for success (for further discussion, see Atkinson, 1964; Wigfield & Eccles, 1992).

Modern Expectancy Value Models

Modern expectancy value theories (e.g., Eccles, 1987, 1993; Eccles et al., 1983; Feather, 1982, 1988; Pekrun, 2000; Wigfield, 1994a; Wigfield & Eccles, 1992, 2000, 2002) are based on Atkinson's work in that they link achievement performance, persistence, and choice most directly to individuals' expectancy-related and task value beliefs. However, they differ from Atkinson's (1964) expectancy value theory in several ways. First, both the expectancy and value components are defined in more elaborate ways, and are linked to a broader array of psychological and social/cultural determinants. Second, these models have been tested in real-world achievement situations rather than with the laboratory tasks often used to test Atkinson's theory.

FEATHER’S WORK: EXPANDING THE SUBJECTIVE VALUES CONSTRUCT

Feather (e.g., Feather, 1982, 1988, 1992) broadened Atkinson’s conceptualization of value, in large part by drawing on the work of Rokeach and
tying that work to expectancy value theory. Rokeach (1973, 1979) focused on values as broad-based, general psychological characteristics of the individual (for descriptions of broad human values, see Rohan, 2000; Schwartz, 1992). He believed these values serve as standards or guides for action, and so argued that personal values might affect behavioral choices such as which occupation to pursue. Interestingly, Rokeach viewed these values as universal; values differ across cultures only in the extent to which they are emphasized in the culture. Since he viewed values as central to the individual’s belief system, he saw them as relatively stable and encompassing, and thought they influenced behavior by providing meaning to that behavior. Rokeach defined two kinds of these broad values. Terminal values are the beliefs about life’s ultimate goals or desired end-states, and instrumental values are the desirable ways of achieving the terminal values. Terminal values include such things as desiring a comfortable life, freedom, equality, and happiness. Instrumental values include courage, capability, ambition, and independence.

Drawing on this work, Feather (1982, 1988) defined values as a set of stable, general beliefs about what is desirable. He proposed that these beliefs come from both society’s norms and the individual’s psychological needs and sense of self. He integrated Rokeach’s approach to values into the expectancy value approach by positing that values are a class of motives that affect behavior by influencing the attractiveness of different possible goals and thus the motivation to attain these goals. Feather studied how individuals’ instrumental values and specific task values related to their choices of different kinds of activities. He found that both kinds of values predicted individuals’ choices such as which political action group to join and what academic major to choose.

Eccles and Colleagues’ Expectancy Value Model

Eccles and her colleagues developed and tested an expectancy value model of achievement-related choices (e.g., Eccles, 1987, 1993; Eccles et al., 1983; Eccles & Wigfield, 1995; Mece, Wigfield, & Eccles, 1990; Wigfield, 1994a; Wigfield & Eccles, 1992, 2000, 2002). They elaborated the definitions of each construct and also studied a variety of influences on each. Eccles and her colleagues have focused on the social psychological influences on choice, persistence, and performance, as well as the developmental course of children’s expectancies and values. They initially developed the model to help explain gender differences in mathematics beliefs and choices of mathematics courses and majors. They broadened the model to other activity areas, most notably sport and physical skill activities (e.g., Eccles & Harold, 1991).
Figure 8.1 depicts a recent version of this model. Moving from right to left in the model, expectancies and values directly influence performance and task choice. Expectancies and values themselves are influenced by task-specific beliefs such as perceptions of competence, perceptions of the difficulty of different tasks, and individuals' goals and self-schema, along with their affective memories for different achievement-related events. These beliefs, goals, and affective memories are influenced by individuals' perceptions of other peoples' attitudes and expectations for them, and by their own interpretations of their previous achievement outcomes. Children's perceptions and interpretations are influenced by a broad array of social and cultural factors. These include socializers' (especially parents and teachers) beliefs and behaviors, their specific achievement experiences and aptitudes, and the cultural milieu in which they live. As mentioned earlier, Eccles and colleagues primarily have focused on gender role stereotypes, cultural stereotypes about subjects such as math and reading, and occupations in their discussion of cultural milieu.

Eccles and her colleagues' research provides support for many of the postulates of the model, and we review some of this research in detail below. To summarize briefly the major findings from this research, Eccles and her colleagues found that individuals' expectancies for success and valuing of mathematics predict their performance in mathematics and their choices of whether to continue studying math. Children's expectancies for success and valuing of achievement are influenced by their previous performance and their self-concepts of ability. Parents' and teachers' beliefs about students predict students' own expectancies and values. Variations in classroom environments influence children's expectancies and values in positive and negative ways. Finally, there are gender differences in children's beliefs and values about different activities that tend to conform to gender stereotypes about the activities (for review of this work, see Eccles, 1993; Eccles et al., 1983; Eccles, Wigfield, & Schiefele, 1998; Jacobs & Eccles, 2000; Wigfield & Eccles, 1992, 2000).

Because the Eccles and colleagues model was originally designed to explain a sociocultural phenomenon, we believe it is particularly well suited for a cultural analysis of motivation and activity choices. We expect that cultural differences in a wide array of activity and behavioral choices, particularly in the achievement domain, reflect cultural differences in success expectations and subjective task value-related beliefs, which, in turn, likely result from cultural differences in the wide range of social experiences that shape human development. The work we and our colleagues have done on gender within the United States provides comprehensive examples of just how these cultural processes can work (for review, see Eccles, 1984a, 1984b; Wigfield & Eccles, 2002). This work shows that parents differentially socialize their children's expectancies and values, and that children's expectancies and values for different activities vary across gender.
FIGURE 8.1.
General model of achievement choices
As noted earlier, in this chapter we focus on three constructs from the model that have received extensive research attention by Eccles, Wigfield, and their colleagues: expectancies for success, beliefs about ability or competence, and subjective task values. We briefly define each of these constructs, review research on them, and then provide a theoretical analysis of the relevance of these constructs for a cultural analysis of behavior.

Defining the expectancy, value, and ability belief constructs. Eccles and colleagues broadened Atkinson’s (1957) original definitions of both the expectancy and value constructs. They define expectancies for success as children’s beliefs about how well they will do on an upcoming task (e.g., how well do you think you will do in math next year?). They distinguished conceptually expectancies for success from the individual’s beliefs about ability. These beliefs refer to children’s evaluations of their competence or ability, both in terms of their assessments of their own ability and also how they think they compare to other students. Ability beliefs are prominent in many motivation models; Wigfield and Eccles (2000) discuss different definitions of this construct in these models. To return to our vignette, Jason’s beliefs about his ability in different subjects come from many years of experience with them and reflect his assessment of his current skills in these subjects. His expectancies refer to how he thinks he will do in the future in the next level of these subjects, and he bases his expectancies primarily on his beliefs about his ability in a given subject area.

Eccles and her colleagues have focused extensively on individuals’ valuing of particular tasks or activities, rather than broader values such as those defined by Rokeach (1973). Much of this work has been grounded in the sociocultural processes linked to gender-role socialization (see Eccles, 1993). Consequently, this set of values should be particularly relevant to cultural analysis.

Eccles and colleagues (1983) proposed four major components of subjective values: attainment value or importance, intrinsic value, utility value or usefulness of the task, and cost (for more detailed discussion of these components, see Eccles et al., 1983; Wigfield & Eccles, 1992). Building on Battle’s (1965, 1966) work on attainment value, Eccles and colleagues defined attainment value as the importance of doing well on a given task. Attainment value incorporates identity issues; tasks are important when individuals view them as central to their own sense of themselves, or allow them to express or confirm important aspects of self.

Intrinsic value is the enjoyment one gains from doing the task. This component is similar in certain respects to notions of intrinsic motivation and interest (see Renninger, 2000; Ryan & Deci, 2000; Schiefele, 2001), but it is important to acknowledge that these constructs come from different theoretical traditions. When children intrinsically value an activity, they often become deeply engaged in it and can persist at it for a long time.

Utility value or usefulness refers to how a task fits into an individual’s future plans, for instance, taking a math class to fulfill a requirement for a
science degree. In certain respects utility value is similar to extrinsic motivation, because when doing an activity out of utility value the activity is a means to an end rather than an end in itself (see Ryan & Deci, 2000). However, the activity also could tie to some important goals that the person holds deeply, such as attaining a certain occupation. In this sense utility value also ties to personal goals and sense of self.

Cost refers to what the individual has to give up to do a task (e.g., do I do my math homework or call my friend?), as well as the anticipated effort one will need to put into task completion. Is working this hard to get an A in math worth it? Eccles and colleagues emphasized that cost is especially important to choice. Choices are influenced by both negative and positive task characteristics and all choices are assumed to have costs associated with them because one choice often eliminates other options. If Jason, from the above scenario, follows his inclinations and chooses to pursue an engineering major once he enters college, that means he will not be able to pursue other possible majors. Despite the theoretical importance of cost to choice, to date, cost has been the least studied of the different components of subjective values (see Battle & Wigfield, 2003, for a study of students’ perceptions of the costs associated with graduate school).

Jason’s choices of which classes to take reflect these different aspects of value. He chose a math class primarily because of its potential usefulness to him, as he plans to be an engineer. By contrast, he chose the advanced history course primarily because he likes history, rather than because it is useful to him. Sometimes these choices can reflect more than one aspect of value; in fact, Jason enjoys math to a degree and so his choice of a math class reflects both interest and usefulness. Thus the influence of an individual’s valuing of an activity on the choice to pursue it or not is a complex process.

Culture and the Expectancy Value Model: Some General Considerations

How might culture relate to the Eccles and colleagues model? Conversely, how might the model help us understand cultural influences on achievement-related behavioral choices? We discuss these questions more comprehensively later in the chapter. At this point, we draw an analogy with the work we have done on gender to illustrate how our approach might be useful to a cultural analysis.

Like gender-role socialization, the processes associated with cultural socialization should influence the ways in which members of cultural groups see themselves as well as the goals and values they develop for their lives. In addition, experiences in different types of learning environments should influence the emotional experiences associated with different activ-
ities. Finally, cultures and countries should vary greatly in the opportunities provided to try different types of activities as well as in the range of activities made available and salient to various individuals living within the group. Each of these processes should lead to both cultural group differences and within-culture individual differences in expectancies, ability self-concepts, and subjective task values. We say more about this later.

At an even more basic level, cultures differ in the extent to which individuals have "choice" over such achievement-related behaviors as educational focus, careers, and leisure activities. Western cultures pride themselves on allowing individuals to make these choices for themselves, even though choice still continues to be heavily socialized in these Western cultures (see Jacobs & Eccles, 2000). Other cultures place less emphasis on individual choice, particularly individual choice based on maximizing self-fulfillment and self-actualization. For example, in interviews with young professionals in China, Eccles found that career choices were based much more on the needs of the community for particular types of skills than on the needs of the individual to find a job that maximized the fit of one's occupation with one's talents and interests. In most cases, an individual's occupation was determined for them by their community, or by the state. Similarly, in interviews with Japanese students, Eccles found that choices about future occupations were based more on the quality of the company than on the fit of the particular job category with the individual's talents and interests. In this case, the individuals were given more power to select their future occupation; but the criteria for their choice was quite different from the criteria advocated in vocational counseling in the United States.

Does this mean that the expectancy value model is not a useful theoretical tool for such cultures? We think not. It does mean that we need to consider the full complexity of the Eccles and colleagues model—its cultural as well as its psychological components. We need to pay particular attention to the sociocultural forces that underlie individual differences in expectancies, ability self-concepts, and subjective task value, as well as the relative predictive power of each of these constructs for the various achievement-related choices available to the individuals. In both of the Chinese and Japanese cases discussed above, the subjective value of various occupation categories was based on more communal considerations than is typical among European American adolescents. In addition, the relevance of ability self-concepts for choice should be less than it is for European American adolescents. These hypotheses, however, have not been tested. We return to these points later.

Equally important, cultures will differ in the range of options provided and the freedom of choice allowed. Eccles (1987, 1994) argued that these two sociocultural characteristics are key to understanding gender differences in occupational choice in the United States. Individuals are only exposed to a narrow range of options available to them in any achievement
domain. Cultures differ greatly in the kinds of day-to-day activities to which their children are exposed. For example, urban children in the United States are not likely to be exposed to playing cricket, African drums, or Balinese dancing for a leisure activity, or to farming as an occupational choice. Consequently, it is not surprising that American children are unlikely to choose these activities.

RESEARCH ON EXPECTANCIES AND VALUES IN WESTERN CULTURE

We review in this section work on the development of children’s competence beliefs, expectancies for success, and achievement values, their relations to performance and choice, and how children of different ages may understand these constructs differently. Because this work has been reviewed in detail elsewhere (e.g., Eccles et al., 1998; Wigfield, 1994b; Wigfield & Eccles, 1992, 2002), we present a relatively brief summary here.

The Structure of Expectancy Beliefs and Values

One important developmental question with respect to these beliefs and values is whether the structure of these constructs is the same in younger and older children. The expectancy value model presumes that these are distinct constructs, but that may not be the case for younger children. Factor-analytic studies of children’s competence beliefs (done within the framework of this model and by other researchers studying ability beliefs) have found that even during the early elementary school years children distinguish different domains of competence, including math, reading, general school, physical ability, physical appearance, peer relations, parent relations, and general self-concept (e.g., Eccles & Wigfield, 1995; Eccles, Wigfield, Harold, & Blumenfeld, 1993; Harter, 1982; Marsh, 1989; Marsh, Craven, & Debus, 1991, 1998).

Eccles and Wigfield (1995) and Eccles et al. (1993) looked at whether children ranging from first through 12th grade have distinct competence beliefs and expectancies for success, as is proposed in the Eccles and colleagues (1983) model. Results of confirmatory factor analyses showed that at all ages children’s competence beliefs and expectancies for success load on the same factor; hence these components are not empirically distinct. Therefore, two of the constructs proposed as separate in the model (competence beliefs, expectancies for success) are not empirically distinguishable when assessed in this way.
In their factor analyses Eccles and Wigfield (1995) and Eccles and colleagues (1993) also examined whether children's competence beliefs and values form separate factors, and found that they do, in children as young as first grade. This finding is crucial for the expectancy value model, because it shows that two of the central constructs are empirically distinct, even in young children. Although competence-expectancy beliefs and values formed different factors, the different components of task value are less differentiated during the elementary school years, becoming differentiated during early adolescence (Eccles & Wigfield, 1995; Eccles et al., 1993).

Changes in the Mean Level of Expectancies and Values

Several researchers have found that children's competence beliefs and expectancies for success for different tasks decline across the elementary school years and into the middle school years (for review, see Dweck & Elliott, 1983; Eccles et al., 1998; Stipek & Mac Iver, 1989). To illustrate, cross-sectional and longitudinal studies of children's competence beliefs in a variety of academic and nonacademic settings in the United States and Australia show that these beliefs decline (e.g., Eccles et al. 1993; Marsh, 1989; Wigfield et al., 1997). These declines, particularly for math, often continue into and through secondary school (Eccles et al., 1983, 1989; Jacobs, Lanza, Osgood, Eccles, & Wigfield, 2002; Wigfield et al., 1991). Researchers looking at changes in the mean level of children's values generally show that children value certain academic tasks less as they get older (Jacobs et al., 2002; Wigfield et al., 1997; for complete reviews, see Eccles et al., 1998; Wigfield & Eccles, 1992, 2002).

The negative changes in children's expectancy-related beliefs and achievement values found in the United States have been explained in two ways. One explanation involves children's growing sophistication at understanding, interpreting, and integrating the evaluative feedback they receive. They also engage in more social comparison with their peers, particularly once they begin school. These processes help children to become more accurate or realistic in their self-assessments, leading some to become relatively more negative about their ability and also about how much they value different achievement activities (see Dweck & Elliott, 1983; Nicholls, 1984; Stipek & Mac Iver, 1989). Returning to our example of Jason, he began school thinking he was quite good at many different activities. From the feedback he received and his comparisons with others, he began to realize he had stronger skills in some areas than others. Although his sense of competence declined to a degree, Jason was a good student, especially in math and science, and so continued to believe he
could do well in these and other areas. Thus he was willing to continue to take additional math courses.

The second explanation has to do with changes in classroom and school environments and conditions. In the United States, school environments often change in ways that make evaluation more salient and competition between students more likely. As high-stakes assessments become more prevalent, such practices are on the increase. This focus on evaluation, performance, and competence make it more likely for some children’s expectancies and values to decline as they go through school (see, e.g., Eccles & Midgley, 1989; Wigfield, Eccles, & Pintrich, 1996). These kinds of changes are characteristic of certain cultural approaches to schooling. In cultures outside the U.S. such changes in school environments may or may not occur, which has implications for how children’s expectancies and values may change in these different cultures.

Relations of Expectancies and Values to Performance and Choice

In the expectancy value model presented in Figure 8.1, individuals’ expectancies for success and subjective values directly predict their achievement outcomes, including their performance, persistence, and choices of which activities to do (e.g. Eccles, 1993; Eccles et al., 1983, 1998). Empirical support for these proposed linkages has been found in longitudinal studies of children ranging in age from 6 to 18. Even when level of previous performance is controlled, students’ competence beliefs strongly predict their performance in different domains, including math, reading, and sports. Students’ subjective task values predict both intentions and actual decisions to keep taking mathematics and English and to engage in sports. The relations appear in children as young as first grade, although the relations strengthen across age (Eccles, 1984a, 1984b; Eccles et al. 1983; Eccles & Harold, 1991; Mecece et al., 1990; Wigfield, 1997; for more detailed review of these studies, see Wigfield, 1994a; Wigfield & Eccles, 2002).

There is one important difference between these findings and the links predicted in the model: In the model competence-related beliefs and values were posited to predict the same outcomes. In the empirical work children’s competence-related beliefs have their strongest direct effects on performance, while achievement values have their strongest direct effects on choice. The positive relations of competence-related beliefs and values, however, means that each does have indirect effects on the other achievement outcome as well: expectancies to choice and values to performance. Jason’s choices of the advanced math and history courses described earlier reflect both his expectations for future success and his valuing of the different courses he is choosing, rather than simply reflecting one or the other.
If he did not think he could handle the work in the math class, he would be less likely to choose it. As well, if he did not see much value in that class (in this case for his future), he also would likely not choose it.

Changes in Children's Conceptions of What Expectancies and Values Mean

Another kind of change in children’s beliefs and values concerns change in the meaning these constructs have for children across their development. The research on this topic has focused primarily on children’s conceptions of ability and intelligence. Children of different ages appear to have different conceptions of what ability is, with consequent influences on their motivation. This kind of change is particularly relevant to a chapter on cultural influences, as these constructs also may have different meanings in different cultures. We return to this latter point in a later section.

Much of this work comes from outside the expectancy value tradition, but we include it here because it deals with central constructs in the model. Nicholls and his colleagues extensively examined children’s conceptions of ability (e.g., Nicholls, 1978, 1984, 1990; Nicholls & Miller, 1984; Nicholls, Patashnick, & Mettetal, 1986). These researchers asked children of different ages various questions about ability, intelligence, effort, and task difficulty, and how different levels of performance can occur when children exert similar effort. Focusing first on the work on ability and effort, their analyses of children’s responses show four relatively distinct levels of reasoning about how ability and effort are differentiated (see Nicholls, 1990, for a more complete review of this work). At the first level (occurring in children ages 5 to 6), effort, ability, and performance are not clearly differentiated in terms of cause and effect. At the second level (dominant in children ages 7 to 9), effort is seen as the primary cause of performance outcomes; however, effort and ability are not differentiated as causes. At level 3 (ages 9 to 12), children begin to differentiate ability and effort as causes of outcomes, but they do not always apply this distinction. Finally, at level 4, which emerges between the ages of 10 and 13, children clearly differentiate ability and effort, and understand the notion of ability as capacity. That is, children conceive that one’s ability can limit the effects additional effort can have on performance, and that if success requires a great deal of effort, it may mean the individual lacks ability.

Dweck and her colleagues (e.g., Dweck, 2002; Dweck & Bempechat, 1983; Dweck & Elliott, 1983; Dweck & Leggett, 1988) have discussed how some children view ability as unchangeable. In their view, children hold one of two views of intelligence or ability. Children holding an *entity* view of intelligence believe that intelligence is a stable trait. Children holding an *incremental* view of intelligence believe that intelligence is changeable, so
that it can be increased through effort. It appears that the entity view of intelligence is similar to the view of "ability as capacity" that Nicholls discussed. However, Nicholls (1990) argued that Dweck and her colleagues equate "ability" and "intelligence" in their work, thus glossing over important differences between the two constructs.

Despite the differences in their approaches to defining and assessing the construct of intelligence, both Nicholls (1984, 1990) and Dweck and her colleagues (e.g., Dweck, 2002; Dweck & Elliott, 1983; Dweck & Leggett, 1988) have discussed how children's conceptions of ability and intelligence can have important motivational consequences. A sense of ability as capacity means that failure is more debilitating. Some children holding this view will believe they have little chance of ever doing well, because their ability cannot be improved. In contrast, believing effort can improve performance in important ways should mean that children will continue to try even if they are not doing well on a given task (for further discussion, see Dweck & Leggett, 1988; Nicholls, 1984, 1990).

Freedman-Doan and colleagues (2000) built on this work by examining how much children thought their ability could improve in different areas, such as academics, sports, and music/art. First-, second-, and fourth-grade children responded to questions about whether they could get better at the activity they currently did worst, and also if they could be best at their current worst activity. Children were optimistic that they could improve and even become best at their current worst activity, especially in the academic and sports domains. There was some evidence that the younger children believed this more strongly than did older children, but the older children also remained optimistic that they can improve. Thus, through the elementary school years children see their ability at particular activities to be malleable.

This work has important implications for the expectancy value model, in particular that the way an individual's beliefs about ability relate to their performance may change depending upon their understanding of what ability is. It also has implications for task choice. With the belief that effort cannot improve ability, individuals may be less likely to choose to do activities at which they believe they are not very good, because they may think they will fail. Individuals believing they can improve their ability through effort may be more likely to choose challenging tasks as a way to build their ability in that area.

CHANGES IN CONCEPTIONS OF SUBJECTIVE TASK VALUES

Researchers have not yet addressed changes in the meaning of the components of task value identified by Eccles and colleagues (1983), although there likely are age-related differences in children's conceptions of what it
means to value different tasks. This may be particularly true for the utility of different activities. Young children likely do not have a clear sense of how different school subjects such as math or reading may be useful to them in the present or future. A clear sense of both the meaning of usefulness as well as a sense of which activities are most useful to children likely emerges later in children’s development, as they begin to think about which careers or jobs to pursue, and other aspects of their lives. To date this possibility has not been addressed (see Wigfield, 1994a, for further discussion of how children’s conceptions of task value may vary across age).

This reasoning also suggests that young children’s involvement in different activities may be based more on their interest in the activity rather than its usefulness. As children get older usefulness likely becomes a stronger predictor of children’s involvement in different activities (see Wigfield, 1994a, for further discussion). For instance, as a high school student, Jason has thought about what he wants to do after he completes his secondary education. His choice of the calculus class reflects his sense that it is potentially useful for his pursuit of an engineering degree in college. He also might be interested in calculus, but even if he isn’t he still would register for the course because of its perceived utility to him. Early in his school career he likely did not have a clear sense of how calculus might be useful to him.

CROSS-CULTURAL RESEARCH ON EXPECTANCIES AND VALUES

In this section, we discuss key issues in cross-cultural psychology research, and consider how they relate to examining the expectancy value model from a cultural perspective. The definition of what cross-cultural research is, of course, is complex; Poortinga (1997) provides a discussion of the term as it applies in psychological research. For the purposes of this chapter we use this term to mean research comparing individuals who live in different countries rather than subgroups living within one country (see Tunks & Wigfield, 2003, for further discussion).

Following the discussion of important issues in cross-cultural research, we review extant work from different cultures on how expectancies and values develop. We organize the research review as in the previous section: factor structure of children’s expectancy-related beliefs and values, mean level differences, relations of beliefs and values to student outcomes, and the meaning of the constructs in different cultures.

Much has been written about the distinction between etic and emic research in cross-cultural research, and which approach is more appropriate (e.g., Berry, 1989; Poortinga, 1997; Yu & Wolters, 2001). An etic approach to cross-cultural research assumes that constructs have the same
meaning across cultures. For example, an etic model of expectancies and values would assume that students of all cultures interpret these constructs in the same way, or that these are universal constructs. When testing such a model, researchers might look for cross-cultural similarities and differences in the strength to which math expectancies and values predict math achievement. A goal of this approach might be to develop a universal expectancy value model, which would have applicability across cultures.

In contrast, an emic approach assumes that constructs take on different meanings in different cultures. An emic model is culture-specific and cannot be generalized to other cultures. Researchers using this approach might address the meanings of expectancies and values within one specific culture by employing qualitative methods such as interviews and ethnographies. The end-product of such research would be a detailed characterization of the construct meanings and their relations to performance and choice within the specific context.

Cross-cultural work of both of these types has been done within the expectancy value framework, and we turn to that work next.

CROSS-CULTURAL RESEARCH ON THE DEVELOPMENT OF EXPECTATIONS AND VALUES

The Structure of Expectancy-Related Beliefs and Values

A number of researchers have examined for children in different cultures the factor structure of their beliefs about their ability. These researchers have used measures developed in Western cultures, such as Harter’s (1982) Perceived Competence Scale (PCS) and Marsh’s (1989) Self-Description Questionnaire (SDQ), to measure children’s perceptions of ability. One purpose of such work is to see if the factor structure of children’s ability beliefs found in Western culture replicates in other cultures. Researchers have found that the factor structure indeed does replicate, although the work has been confined primarily to students from Eastern cultures, particularly China.

To illustrate, Hau, Kong, and Marsh (2000) gave a Chinese version of the SDQ to a large sample of adolescents in Hong Kong. Using confirmatory factor analyses, they found that the factor structure of the Hong Kong adolescents’ responses to the SDQ was nearly identical to that reported by Marsh and his colleagues (e.g., Marsh, 1990) in administrations of the SDQ in Australia. As discussed earlier, in the Australian (and U.S.) studies children’s ability beliefs form separate factors in each domain assessed. The same occurred in the Hong Kong sample.
Stigler, Smith, and Mao (1985) gave the PCS to fifth-grade students in Taiwan and the U.S. They used exploratory factor-analytic procedures similar to those used by Harter (1982) in her study of American children, and found that the Taiwanese students’ responses produced a factor structure very similar to the factor structure reported by Harter (1982). Stigler and colleagues were careful to conclude that although their results show that Taiwanese students, like American students, have differentiated beliefs about competence, there could be other ways in which the two groups’ beliefs about competence differ. These include other possible domains of competence not measured by the PCS that may be relevant in one culture but not the other, and different areas of emphasis within shared domains of competence.

Given the similarity in factor structure in children’s ability beliefs across cultures, it might be argued that the construct does not vary in different cultures. One problem with drawing this conclusion is that the questionnaire measures used in these studies do not get at children’s understandings of what their ability is. Instead, children simply respond to investigator-generated items, which were first developed in the West. Interview methods are necessary for the purpose of assessing whether the actual meaning of a construct like sense of ability or subjective values differ across culture. We return to this point below.

We know of no work that has examined the factor structure across cultures of children’s subjective task values. Given the results for ability beliefs just reported, we might expect that the factor structure of children’s responses to scales measuring task values may also be similar across cultures. However, it is possible that values, more so than ability beliefs, are influenced by culture, as values seem inherently influenced by culture. Parents and institutions within a given culture have the major responsibility to teach their children values of different kinds, including the value of academics. Given this, perhaps, the factor structure of children’s subjective values may vary more across culture than the factor structure of children’s ability beliefs appears to. To address this issue, researchers need to do two things. First, they should factor analyze for children in different cultures responses to the existing scales measuring subjective task values to see how similar or different the factor structure is using existing measures. Second (and perhaps even more important) researchers need to interview children from different cultures to get at the meaning values has for them. We return to this point later.

Change in the Mean Level of Expectancies and Values

We reviewed work earlier showing that in the United States and Australia children’s beliefs about ability and expectancies for success decreased over
the school years. Researchers are beginning to address whether this is true in other cultures as well. Chang, McBride-Chang, Stewart, and Au (2003) examined second- and eighth-grade Hong Kong students’ beliefs about their competence, using the PCS. They found that younger children had more positive beliefs about their academic and sport self-competence than did the older children. They concluded that like American adolescents, adolescents in Hong Kong face various challenging school, social, and biological transitions, which may lower their sense of competence in different areas. However, the sample size of this study was quite small, and in two areas (social competence beliefs and general self-esteem) there were no age differences. Clearly, more work is needed to see whether the patterns of decline in competence beliefs observed in studies in the United States and Australia occur in other cultures.

To date there has been very little work on how students from different cultures subjective values change across age, at least in terms of the specific kinds of values measured by Eccles, Wigfield, and their colleagues. Recall that the pattern found by Eccles and colleagues is that children’s subjective values for academic activities tend to decrease over time. Henderson, Marx, and Kim (1999) studied U.S., Korean, and Japanese children’s interest in different activities, including numbers, words, ideas, things, people, and being alone. The first three were categorized as academic activities. The children in each country were in grades 2 through 5, and interest was measured with a single-item indicator. They predicted a decrease across age in interest in the academic activities, and the prediction was supported for words and numbers but not ideas. This study provides some preliminary evidence that there is a decline in interest in academic activities in two Eastern countries as there is in the West, but the instrument used to measure interest is limited and the design was cross-sectional. More research is needed on how children’s subjective values change over time in different countries. Researchers could begin this work by using measures developed in the West and seeing if observed changes in children’s subjective task values are similar or different from the changes reviewed above. This etic approach should be supplemented with emic work looking at the nature of subjective values in different cultures, and how these values may change across development.

Mean-Level Differences in Expectancy-Related Beliefs and Values across Culture

A number of researchers have compared mean levels of ability beliefs in different cultures, with the comparisons done primarily between students in the West and East. These researchers generally find that American, Canadian, and English students have higher perceptions of their compe-
tence in different subject areas than do students from Eastern cultures and Russia (e.g., Eaton & Dembo, 1997; Elliott, Hufton, Illushin, & Lauchlan, 2001; Kwok, 1995; Kwok & Lyton, 1996; Stevenson et al., 1990; Stigler et al., 1985; Whang & Hancock, 1994; for more complete review, see Hufton, Elliott, & Illushin, 2002a; Zusho & Pintrich, 2003). Interestingly, the Asian students often perform better on the achievement measures given in these studies (e.g., Stevenson & Lee, 1990).

The differences in perceived competence favoring Western students are often discussed in terms of their tendency to self-enhance, and Asian students’ tendency to be modest in their self-presentations. These tendencies themselves are explained in terms of the characterization of Western culture as individualistic, and Eastern cultures as collective (Markus & Kitayama, 1991). However, Zusho and Pintrich (2003) argue that such explanations may be too general, and that more work is needed on how students calibrate their responses in each culture, and also how students construe ability in each culture, to know if the measures given are seen in the same way and responded to in the same way (see also Hufton et al., 2002a). In one study looking at how students from different cultures calibrate their responses, Chen, Lee, and Stevenson (1995) found that American students more often used the extreme ends of the answer scale, and students from Asian cultures used the midpoints more frequently, suggesting that there are differences in calibration across culture.

Are there cultural differences in children’s valuing of different activities? This question has been examined in two ways. One approach is to study individuals’ broader valuing of education. Feather (1975) studied how the broader values defined by Rokeach (1973) varied across cultures and found some interesting differences in different cultural groups. (We do not review that work because it is outside the scope of this chapter.)

Researchers have looked at differences across culture in children’s interest in different school-related activities, one of the components of task value in the expectancy value model. Results of this work present a somewhat mixed picture. Stevenson and colleagues (1990) examined first- and fifth-grade children from Chicago and Beijing to rate their interest in math. They found that a higher percentage of Chinese children (85%) than American children (72%) reported liking math, but as can be seen, these percentages both are high. Furthermore, when children were asked what they would like to learn if they had the opportunity to learn something new, more American children spontaneously mentioned math.

In the study of cross-cultural differences in interest described above, Henderson and colleagues (1999) also looked at how the Asian and American children differed in their interest in different activities. They predicted that the Asian children would express more interest in academic activities, but there was little evidence for this. There also were few culture-by-grade interactions. In a study of 11th-grade students’ interest in math (measured with two items analogous to measures used by Eccles,
Wigfield, and their colleagues) in Germany and Japan, Randel, Stevenson, and Witruk (2000) found that the German students reported liking math more.

Thus the findings with respect to one component of subjective values, children's interest in different activities, clearly are mixed. The work to date is limited because different researchers used quite different measures, and so it is difficult to reach any firm conclusions about how children's valuing of different activities varies across cultures. These researchers also did not address whether the interest construct they assessed varied in meaning across cultures. Clearly, more research is necessary in this area, both to look at the different components of task value identified by Eccles and their colleagues, and also to assess other possible aspects of task value.

Relations of Expectancies and Values to Performance and Choice

This issue has been addressed in different ways. As Zusho and Pintrich (2003) point out, the fact that Asian students generally perform very well but rate their ability relatively lower may mean their beliefs and performance don't relate that strongly, or at least that Asian students underestimate their ability and American students overestimate theirs.

Other researchers examined directly the relations of ability beliefs and performance. Marsh, Hau, and Kong (2002) assessed in a large sample of adolescents from Hong Kong causal relations of academic self-concept of ability (SCA) and verbal and numeric performance during high school. Based on earlier research done in Australia by Marsh and Yeung (1997), they predicted that achievement and SCA would relate reciprocally to one another. They found that this indeed was the case, and the strength of these relations was similar in the two studies. Marsh and colleagues concluded (cautiously) that these results provide preliminary support that the reciprocal effects model is universal.

How about the relations of students' achievement values to achievement? Researchers measuring students' interest in different activities using items similar to those used by Eccles and her colleagues in their work have looked at relations of interest to achievement. Stevenson and Lee (1990) report cross-cultural similarities in the relations between interest and achievement among elementary school students in samples from Taiwan, Japan, and the United States. The researchers found significant positive correlations between one item measuring interest in math and achievement in math among students in Grades 1 and 5. In another study, Randel and colleagues (2000) combined this interest item with an item about liking math to form the composite math attitude, which correlated positively with achievement among Grade 11 students in Japan, but not among
Grade 11 students in Germany. So overall these researchers have found that interest measured by items similar to those used by Eccles, Wigfield, and their colleagues relates to children’s achievement. More such studies are needed, including work looking at how the other components of task values relate to performance or achievement.

Recall that Meece and colleagues (1990) found that children’s ability beliefs and expectancies directly predicted their subsequent performance in math and were themselves influenced by previous performance, similar to the findings of Marsh and colleagues (2002) just reviewed. In the Meece and colleagues study, children’s valuing of mathematics predicted their intentions to take more mathematics courses. There has been little cross-cultural work on values’ relations to intentions and choice. One exception is Elliott, Hufton, and colleagues’ work (see Hufton et al., 2002a, for a summary). These researchers report that Russian students appear to accept schoolwork as valuable in its own right and for the purposes of becoming an educated citizen, rather than for its relations to later careers, perhaps indicating that their specific valuing of different tasks does not relate as strongly to course choice as is found in studies of American samples.

Asakara and Csikszentmihalyi (2000) conducted a study of adolescents’ judgments of the importance of different activities to their future goals. They reported stronger correlations of these ratings to happiness and self-esteem in Asian American students compared to Caucasian students, although it should be noted that the correlations in both groups generally were low. The researchers interpreted these results as indicating that the Asian American students have internalized values relevant to achievement more strongly than the Caucasian students, because these values relate to other important psychological characteristics more strongly in the Asian American group. In terms of our expectancy value focus, these findings can be extrapolated to mean that the Asian American students’ sense of importance of achievement may predict more strongly their choice of achievement activities, given the stronger internalization of values in this group. This possibility needs to be tested directly, particularly in light of the low correlations reported in this study.

Differences in the Meaning of the Ability and Value Constructs Across Cultures

Most of the work just reviewed takes the etic approach to cross-cultural research, in that constructs and measures developed in Western cultures are given to children in other cultures, and comparisons made of the responses. The factor-analytic studies perhaps can be considered a mixture of the etic and emic approaches (see also McNerney, 1995). This research
provides much interesting information, but does not help us to understand fully similarities and differences in the constructs across culture. Emic approaches are required for this task. We already know from research reviewed earlier done primarily by Dweck, Nicholls, and their colleagues that even within American culture younger and older children appear to have different understandings of what ability and intelligence mean. Nicholls and his colleagues' work, summarized above, suggests developmental differences in children's ideas about what constitutes ability, with younger children seeing effort and ability working together, and older children seeing them as inversely related. Dweck's work suggests individuals differences, with some children believing intelligence is changeable and others not.

Conceptions of Ability

A number of researchers have looked at how conceptions of ability differ across culture. Like the Western research on ability beliefs, some cross-cultural work in this area has focused on the meaning of intelligence. Quihuis, Bempechat, Jimenez, and Boulay (2002) specifically addressed Dweck and Legget's (1988) model of entity and incremental views of intelligence in a group of 10th- through 12th-grade Mexican American students, using both questionnaire and interview methods. They found that when students who were classified as holding entity views of intelligence in all domains (i.e., general intelligence, mathematics, science, and English) elaborated on their answers, many held incremental views as well. Some students held entity views in some domains and incremental views in others, while other students were shown to hold both views within domains. The authors attribute this finding to the fact that interviews afforded a context for achievement views that decontextualized questionnaires did not. In relating their responses to their day-to-day learning, interviewees were able to consider social, structural, and internal (to the person) factors in their answers. One shortcoming of this study, however, is that the authors did not specifically discuss these students' particular culture and how it might influence their beliefs.

Hutson, Elliott, and Illushin (2002a) conducted surveys and interviews with pupils in England, Russia, and the United States to investigate a variety of factors related to motivation and engagement, including meaning of ability. They report that subtle differences in the meaning of ability do exist between students in these locations. American students' notion of "smart" seems to designate something that can be increased by effort, reminiscent of Dweck and Leggett's (1988) incremental view of intelligence. In England, students see intelligence as somewhat less changeable and Russian students contrast having a talent with not having a talent in a subject area. The authors took these differences to indicate that notions of ability
Expectancy Value Theory in Cross-Cultural Perspective

187

do not transcend cultures, and stated that instruments used to measure students' concepts of ability need to reflect such culturally specific meanings.

Another study by the same researchers (Hufton et al., 2002b) painted an even more complex picture of student-constructed meanings of ability. To investigate further their earlier finding that English and American students were more likely to attribute success to effort over ability, yet exerted less academic effort than the Russian students, they interviewed 15-year-olds from each location. Pupils in all locations viewed ability less as an innate quality and more as determined by effort and teaching. Russian students were the most likely to see ability as an outcome of effort, which may indicate that these students saw the most overlap between the effort and ability constructs. Although survey data indicate that English and American students attribute success to effort rather than ability more so than the Russian students, interviews reveal that the Russian students' concept of ability may include a higher degree of effort. As for the Russian pupils' notion of talent as part of intelligence, the authors explain that all Russian students in the study were exerting high amounts of effort. In such a culture, pupils see natural talent as the quality that distinguishes the very top students.

There is a large literature on how students' attributions differ across culture. Although attribution theory is not the topic of this chapter, this work is relevant to how individuals construe ability, and so we mention it briefly here. The prevailing findings in this work are that Asian students emphasize effort relatively more in explaining their achievement outcomes than students in the West (see Holloway, 1988; Stevenson & Lee, 1990). This work may suggest that Asian students take a more incremental view of their ability than do students in the West, given their focus on effort as essential to their achievement.

How are these cultural differences in concepts of ability explained? Holloway (1988) and others have argued that socialization practices may produce these differences. She discussed how Japanese culture emphasizes cooperation and integration into the social group as key aspects of socialization. Holloway reviewed research showing that Japanese adults emphasize social competence in their definition of intelligence more so than Americans, who separate social and intellectual competence to a greater degree. These findings fit with Markus and Kitayama's (1991) notion that the Japanese have a more interdependent view of the self. She further discussed how in Japanese culture parents and teachers emphasize the development of learning and understanding for its own sake, use control strategies that are less authoritarian, and evaluate children in ways that emphasize effort as ways in which children are socialized to believe effort is what is key to success. Certainly, the belief that effort is crucial is rooted in American culture as well, but may be more so in other cultures, particularly Asian cultures.
Another possible cultural difference in ability beliefs concerns cultural differences in the stereotypes of different abilities. Some cultures believe that individual differences in math and sports ability reflect individual differences in practice and learning. Others believe these individual differences are due primarily to innate aptitude. It is likely that the conclusions the children in these different types of cultures draw from their success and failure experiences in math and sports about their ability will differ—leading to cultural differences in ability self-concepts for different academic domains. Such differences also could have implications for participation in different activities.

One methodological implication of this body of research is that etic methods alone cannot get at the complex meanings that students construct around concepts such as ability and intelligence, as Bempechat and colleagues (Bempechat & Boulay, 2001; Bempechat & Drago-Severson, 1999) have pointed out. They contend that emic methods are needed in order to better understand how students in any culture construct their own meanings regarding motivation constructs. Furthermore, they warn against reducing complex constructs down to dichotomies (e.g., entity vs. incremental or effort vs. ability), which end up limiting how the constructs are studied and interpreted.

This work on the differences in the meaning of ability across cultures has important implications for expectancy value theory. Recall that one important finding in expectancy value research is that individuals’ expectancies for success and ability beliefs predict their performance. We reviewed some evidence earlier suggesting these links hold in other cultures as well (although that research is scant). However, the interpretation of these findings across cultures may vary, given the differences in the meaning of ability in different cultures. Beliefs about ability may predict performance in different cultures, but we should not necessarily assume that children view ability in the same way in these cultures. Furthermore, in cultures where effort appears a more important explanation for success than ability, perhaps links between student effort and outcomes would be stronger than those between students’ expectancies for success and outcomes.

Conceptions of Task Value

To date, there has been little research on how the meaning of the values construct may vary across cultures. One such study was the Hufton and colleagues (2002b) study described above. They also assessed Russian students’ achievement values, and reported that these students did not appear to view the values of tasks in terms of the components of task value identified by Eccles and her colleagues. These findings suggest a different conceptualization of values across cultures, but they are preliminary.
As noted earlier, we believe it is quite possible that culture may impact values even more than conceptions of ability, as a major cultural obligation is the socialization of children's values, both broadly and more specifically defined. We have focused in this chapter on attainment value or importance, utility, and interest as the three main components of children's valuing of academic activities. How might the meaning of each component of values vary in different cultural settings? Here are some possibilities.

Attainment value, for example, should be very culturally embedded. The value of various identity components, activities, and behaviors is a central component of culture. To the extent that individuals within a culture internalize the culturally proscribed identity components, these individuals will place greater importance (attainment value) on those behaviors and activities that are consistent with these identity components. Similarly, to the extent that individuals have internalized the culturally proscribed identity components, the lower value, and the higher cost, they will attach to activities and behaviors that are inconsistent or antithetical with the culturally proscribed identity components.

In the Eccles and colleagues' model, importance is defined in terms of self and identity issues; tasks that are important to the individual confirm or relate to central aspects of their own identities (see Eccles, 1993; Eccles et al., 1983). For children in Western cultures, this focus on identity may imply how important the task is to one's independent, individualistic self. Eastern cultures often are characterized as collective, with people focused on how one fits into the collective whole (or at least a social group) rather than on the individual self (Markus & Kitayama, 1991; but see Pintrich & Zusho, 2003, and Triandis, 2001, for a critique of this view). In such cultures, importance could reflect different emphasis. Thus, rather than confirming aspects of one's own identity, importance of an activity may confirm one's relation to the group, and individuals would judge the importance of a task based on these considerations as well as how the task relates to one's own separate identity.

A similar point may apply to usefulness, defined by Eccles and colleagues (1983) in terms of the utility of the activity to the individual. In cultures characterized as collective utility may reflect not just the usefulness of the activity to the individual but also to one's larger social group. The concern about the group actually could outweigh the utility to the individual. To go back to the example of Jason from the beginning of this chapter, if living in a collective culture, Jason might judge the usefulness of the calculus course more on how it would help him fit into and contribute to his group, rather than its utility solely to him personally.

If various adult roles are valued differently across cultures, then the utility value of those activities and behaviors likely to be instrumental to achieving these adult roles will also vary across cultures and subcultural groups. Similarly, the cost of engaging in activities or behaviors that reduce the likelihood of achieving these adult roles will vary across cultures. In
addition, cultures will vary in their tolerance and encouragement of non-traditional and non-normative behavioral choices. As the tolerance and encouragement go down, the cost of non-normative and nontraditional choices goes up—in some cases to the point of death.

How about interest? Interest often is defined in terms of personal interest or situational interest (see Schiefele, 2001). Personal interest is a deep-seated interest resting within the individual, whereas situational interest is a temporary interest generated by the activity one is doing. In collectivist cultures, interest also may reflect social aspects to a greater extent, so that individuals judge their personal interest based more on group rather than just individual standards or considerations.

Finally, females and males in all cultures, as well as other cultural subgroups within a culture, engage in quite different activities both as children and adults. In part, these differences are likely to reflect differences in the choices to which females and males are exposed; in part, these differences reflect the impact of sociocultural processes on the development of females’ and males’ ability self-perceptions and subjective task values. Interview methods could be used to ask children from different cultures about how they view these value constructs, to begin to understand more clearly the nature of subjective task values in different cultures, and how they influence individuals’ choices of activities to pursue.

Such emic research would help us understand some of the important relations posited in the expectancy value model. As noted earlier, in research done in the West, children’s ability beliefs directly predict their performance, and values predict their intentions and choices of activities. We reviewed earlier cross-cultural research on how children’s ability-related beliefs relate to their performance. Researchers now need to assess the relations of values to intentions and choice in other cultures. Having an understanding of what the different subcomponents of values mean to children in different cultures would be very beneficial for interpreting the results of these studies, particularly if the relations were different than those found in the studies done in the West.

Clearly, there is much yet to be done on cross-cultural differences in children’s valuing of different activities, both in terms of the meaning this construct has for children, how values relate to choice of activities, and the kinds of activities children find most valuable to them. Such work is crucial in order for us to understand how the expectancy value model may operate in different cultures.

CONCLUSION

In this final section we close with some implications of the cross-cultural work we reviewed for expectancy value theory. It is important to reiterate that this model was developed originally to address a sociocultural phe-
nomenon, gender differences in mathematics performance and choice, and so it is particularly well suited for a cultural analysis of motivation and activity choices. Having said that, there is a great deal of research that needs to be done to assess the model cross-culturally, and in this final section we provide some additional suggestions for what some of this research should be.

Returning to the model in Figure 8.1, our view is that many, if not all, of the links proposed in the model likely would be found in full tests of the model in other cultures. We base this contention on the cross-cultural research reviewed in this chapter. This work indicates that individuals' beliefs about their ability relate to their performance, and their values have an impact on activity choice. Children's previous performance influences their beliefs about their abilities. Although not reviewed here, there is cross-cultural research showing how parents and teachers influence children's ability beliefs, expectancies, and values.

Thus many of the basic linkages in the model have received some preliminary research support from cross-cultural research. However, much more work is needed to look more carefully at the strength of the relations proposed in the model, to see how much they vary across culture. It is conceivable that there could be variations in the strength of these relations in different cultures, even if the linkages all are present. One reason for this could be differences in how the different constructs are defined across cultures, which, as we have seen, does occur. Cultural emphases on one construct (e.g., valuing of achievement) rather than others (beliefs about ability) could be another reason why the strength of the linkages proposed in the model could vary across cultures. For instance, if the value of achievement was emphasized in a given culture, irrespective of how able a child is, then subjective values may more strongly predict both performance and choice in that culture. Furthermore, as noted above, other direct links may need to be added, such as a link between beliefs about effort and achievement outcomes.

Work examining these linkages likely would be characterized as etic, if existing measures developed in the West were used to study them in individuals from different cultures. To understand clearly what the linkages mean, emic work needs to be done to investigate the nature of the crucial constructs in the model before examining linkages among them. We suggest that this work should start with explorations of individuals' ability beliefs, expectancies for success, and subjective task values. The work on values may be especially important. As reviewed above, there has been some work on how individuals in different cultures characterize ability. There is very little such work done on the values construct. Once this work has been done, perhaps new measures of ability beliefs and values could be developed for use in different cultures, and linkages of these beliefs and values to performance and choice be examined.
Furthermore, it also is quite possible that additional constructs need to be included in the model for it to account more fully for cultural influences. The cultural milieu block (see Figure 8.1) clearly is one place where this needs to occur. That block focuses on two major things: gender role stereotypes and cultural stereotypes about activities. These likely are important things to consider in all cultures, but other aspects of the cultural milieu in different cultures should be added to this block. The particular constructs included here likely could vary greatly across cultures.

Another example is in the socializers’ beliefs and behaviors block. We need a better understanding of both of these things to understand fully how socializers influence children in different cultures (see also Jacobs & Eccles, 2000). An example of this is teachers’ behavior. We reviewed briefly work suggesting that changes in students’ ability beliefs and values is due in part to changes in teachers’ instructional practices across the school years. Whether and how this occurs in other cultures is an important topic for research, and would help us understand changes in children’s ability-related beliefs and values in these cultures.

One of the challenges in understanding cultural influences is to go beyond cross-cultural comparisons and look at variations within cultures. Studies of expectancies and values done in the West have done this by examining gender and developmental differences, and variations in expectancies and values across both gender and age have been found (see Wigfield & Eccles, 2002). Researchers have also examined variations in achievement beliefs and values within a given group in a culture, such as African American children in the United States (Graham, 2002). Less of this work has been done in other cultures, to examine the complex interplay of culture, gender, ethnicity, and development and how they influence individuals’ expectancies and values, and their performance and choice. It seems likely that in some cultures gender may have a stronger influence on individuals’ beliefs and values than occurs in the West, depending on how gender is defined within that culture. In other cultures, gender differences could be less pronounced. Broadly, within-cultural variation may be produce greater differences than cross-cultural variation in some cases. Expectancy value models have promise to help us understand these variations, but much more research is needed to understand them fully.

REFERENCES

subjective task values across the elementary school years: A three-year study. *Journal of Educational Psychology, 89,* 451–469.
